Drowned wildebeests can feed a river ecosystem for years

More than a million wildebeests migrate each year from Tanzania to Kenya and back again, following the rains and abundant grass that springs up afterward. Their path takes them across the Mara River, and some of the crossings are so dangerous that hundreds or thousands of wildebeests drown as they try to traverse the waterway.

Those animals provide a brief, free buffet for crocodiles and vultures. And, a new study finds, they’re feeding an aquatic ecosystem for years.

Ecologist Amanda Subalusky of the Cary Institute of Ecosystem Studies in Millbrook, N.Y., had been studying water quality in the Mara River when she and her colleagues noticed something odd. Commonly used indicators of water quality, such as dissolved oxygen and turbidity, were sometimes poorest where the river flowed through a protected area. They quickly realized that it was because of the animals that flourished there. Hippos, which eat grass at night and defecate in the water during the day, were one contributor. And dead wildebeests were another.

“Wildebeest are especially good at following the rains, and they’re willing to cross barriers to follow it,” says Subalusky. The animals tend to cross at the same spots year after year, and some are more dangerous than others. “Once they’ve started using a site, they continue, even if it’s bad,” she notes. And on average, more than 6,000 wildebeests drown each year. (That may sound like a lot, but it’s only about 0.5 percent of the herd.) Their carcasses add the equivalent of the mass of 10 blue whales into the river annually.

Subalusky and her colleagues set out to see how all that meat and bone affected the river ecosystem. When they heard about drownings, they would go to the river to count carcasses. They retrieved dead wildebeests from the water to test what happened to the various parts over time. And they measured nutrients up and downstream from river crossings to see what the wildebeest carcasses added to the water.

“There are some interesting challenges working in this system,” Subalusky says. For instance, in one experiment, she and her colleagues put pieces of wildebeest carcass into mesh bags that went into the river. The plan was that they would retrieve the bags over time and see how quickly or slowly the pieces decomposed. “We spent a couple of days putting the whole thing together and we came back the next day to collect our first set of samples,” she recalls. “At least half the bags with wildebeest meat were just gone. Crocodiles and Nile monitors had plucked them off the chain.”
The researchers determined that the wildebeests’ soft tissue decomposes in about two to 10 weeks. This provides a pulse of nutrients — carbon, nitrogen and phosphorus — to the aquatic food web as well as the nearby terrestrial system. Subalusky and her colleagues are still working out the succession of scavengers that feast on the wildebeests, but vultures, marabou storks, egg-laying bugs and things that eat bugs are all on the list.
Once the soft tissue is gone, the bones remain, sometimes piling up in bends in the river or other spots downstream. “They take years to decompose,” Subalusky says, slowly leaching out most of the phosphorus that had been in the animal. The bones can also become covered in a biofilm of algae, fungi and bacteria that provides food for fish.

What initially looks like a short-lived event actually provides resources for seven years or more, Subalusky and her colleagues report June 19 in the Proceedings of the National Academy of Sciences.

The wildebeest migration is the largest terrestrial migration on the planet, and others of its kind have largely disappeared as humans have killed off animals or cut off their migration routes.

Only a few hundred years ago, for instance, millions of bison roamed the western United States. There are accounts in which thousands of bison drowned in rivers, similar to what happens with wildebeests. Those rivers may have fundamentally changed after bison were nearly wiped out, Subalusky and her colleagues contend.

We’ll never know if that was the case, but there are still some places where scientists may be able to study the effects of mass drownings on rivers. A large herd of caribou reportedly drowned in Canada in the 1980s, and there are still some huge migrations of animals, such as reindeer. Like the wildebeests, these animals might be feeding an underwater food web that no one has ever noticed.

How earthquake scientists eavesdrop on North Korea’s nuclear blasts

On September 9 of last year, in the middle of the morning, seismometers began lighting up around East Asia. From South Korea to Russia to Japan, geophysical instruments recorded squiggles as seismic waves passed through and shook the ground. It looked as if an earthquake with a magnitude of 5.2 had just happened. But the ground shaking had originated at North Korea’s nuclear weapons test site.

It was the fifth confirmed nuclear test in North Korea, and it opened the latest chapter in a long-running geologic detective story. Like a police examiner scrutinizing skid marks to figure out who was at fault in a car crash, researchers analyze seismic waves to determine if they come from a natural earthquake or an artificial explosion. If the latter, then scientists can also tease out details such as whether the blast was nuclear and how big it was. Test after test, seismologists are improving their understanding of North Korea’s nuclear weapons program.
The work feeds into international efforts to monitor the Comprehensive Nuclear-Test-Ban Treaty, which since 1996 has banned nuclear weapons testing. More than 180 countries have signed the treaty. But 44 countries that hold nuclear technology must both sign and ratify the treaty for it to have the force of law. Eight, including the United States and North Korea, have not.

To track potential violations, the treaty calls for a four-pronged international monitoring system, which is currently about 90 percent complete. Hydroacoustic stations can detect sound waves from underwater explosions. Infrasound stations listen for low-frequency sound waves rumbling through the atmosphere. Radio­nuclide stations sniff the air for the radioactive by-products of an atmospheric test. And seismic stations pick up the ground shaking, which is usually the fastest and most reliable method for confirming an underground explosion.

Seismic waves offer extra information about an explosion, new studies show. One research group is exploring how local topography, like the rugged mountain where the North Korean government conducts its tests, puts its imprint on the seismic signals. Knowing that, scientists can better pinpoint where the explosions are happening within the mountain — thus improving understanding of how deep and powerful the blasts are. A deep explosion is more likely to mask the power of the bomb.
Separately, physicists have conducted an unprecedented set of six explosions at the U.S. nuclear test site in Nevada. The aim was to mimic the physics of a nuclear explosion by detonating chemical explosives and watching how the seismic waves radiate outward. It’s like a miniature, nonnuclear version of a nuclear weapons test. Already, the scientists have made some key discoveries, such as understanding how a deeply buried blast shows up in the seismic detectors.
The more researchers can learn about the seismic calling card of each blast, the more they can understand international developments. That’s particularly true for North Korea, where leaders have been ramping up the pace of military testing since the first nuclear detonation in 2006. On July 4, the country launched its first confirmed ballistic missile — with no nuclear payload — that could reach as far as Alaska.

“There’s this building of knowledge that helps you understand the capabilities of a country like North Korea,” says Delaine Reiter, a geophysicist with Weston Geophysical Corp. in Lexington, Mass. “They’re not shy about broadcasting their testing, but they claim things Western scientists aren’t sure about. Was it as big as they claimed? We’re really interested in understanding that.”

Natural or not
Seismometers detect ground shaking from all sorts of events. In a typical year, anywhere from 1,200 to 2,200 earthquakes of magnitude 5 and greater set off the machines worldwide. On top of that is the unnatural shaking: from quarry blasts, mine collapses and other causes. The art of using seismic waves to tell one type of event from the others is known as forensic seismology.

Forensic seismologists work to distinguish a natural earthquake from what could be a clandestine nuclear test. In March 2003, for instance, seismometers detected a disturbance coming from near Lop Nor, a dried-up lake in western China that the Chinese government, which signed but hasn’t ratified the test ban treaty, has used for nuclear tests. Seismologists needed to figure out immediately what had happened.

One test for telling the difference between an earthquake and an explosion is how deep it is. Anything deeper than about 10 kilometers is almost certain to be natural. In the case of Lop Nor, the source of the waves seemed to be located about six kilometers down — difficult to tunnel to, but not impossible. Researchers also used a second test, which compares the amplitudes of two different kinds of seismic waves.

Earthquakes and explosions generate several types of seismic waves, starting with P, or primary, waves. These waves are the first to arrive at a distant station. Next come S, or secondary, waves, which travel through the ground in a shearing motion, taking longer to arrive. Finally come waves that ripple across the surface, including those called Rayleigh waves.
In an explosion as compared with an earthquake, the amplitudes of Rayleigh waves are smaller than those of the P waves. By looking at those two types of waves, scientists determined the Lop Nor incident was a natural earthquake, not a secretive explosion. (Seismology cannot reveal the entire picture. Had the Lop Nor event actually been an explosion, researchers would have needed data from the radionuclide monitoring network to confirm the blast came from nuclear and not chemical explosives.)

For North Korea, the question is not so much whether the government is setting off nuclear tests, but how powerful and destructive those blasts might be. In 2003, the country withdrew from the Treaty on the Nonproliferation of Nuclear Weapons, an international agreement distinct from the testing ban that aims to prevent the spread of nuclear weapons and related technology. Three years later, North Korea announced it had conducted an underground nuclear test in Mount Mantap at a site called Punggye-ri, in the northeastern part of the country. It was the first nuclear weapons test since India and Pakistan each set one off in 1998.

By analyzing seismic wave data from monitoring stations around the region, seismologists concluded the North Korean blast had come from shallow depths, no more than a few kilometers within the mountain. That supported the North Korean government’s claim of an intentional test. Two weeks later, a radionuclide monitoring station in Yellowknife, Canada, detected increases in radioactive xenon, which presumably had leaked out of the underground test site and drifted eastward. The blast was nuclear.

But the 2006 test raised fresh questions for seismologists. The ratio of amplitudes of the Rayleigh and P waves was not as distinctive as it usually is for an explosion. And other aspects of the seismic signature were also not as clear-cut as scientists had expected.

Researchers got some answers as North Korea’s testing continued. In 2009, 2013 and twice in 2016, the government set off more underground nuclear explosions at Punggye-ri. Each time, researchers outside the country compared the seismic data with the record of past nuclear blasts. Automated computer programs “compare the wiggles you see on the screen ripple for ripple,” says Steven Gibbons, a seismologist with the NORSAR monitoring organization in Kjeller, Norway. When the patterns match, scientists know it is another test. “A seismic signal generated by an explosion is like a fingerprint for that particular region,” he says.

With each test, researchers learned more about North Korea’s capabilities. By analyzing the magnitude of the ground shaking, experts could roughly calculate the power of each test. The 2006 explosion was relatively small, releasing energy equivalent to about 1,000 tons of TNT — a fraction of the 15-kiloton bomb dropped by the United States on Hiroshima, Japan, in 1945. But the yield of North Korea’s nuclear tests crept up each time, and the most recent test, in September 2016, may have exceeded the size of the Hiroshima bomb.
Digging deep
For an event of a particular seismic magnitude, the deeper the explosion, the more energetic the blast. A shallow, less energetic test can look a lot like a deeply buried, powerful blast. Scientists need to figure out precisely where each explosion occurred.

Mount Mantap is a rugged granite mountain with geology that complicates the physics of how seismic waves spread. Western experts do not know exactly how the nuclear bombs are placed inside the mountain before being detonated. But satellite imagery shows activity that looks like tunnels being dug into the mountainside. The tunnels could be dug two ways: straight into the granite or spiraled around in a fishhook pattern to collapse and seal the site after a test, Frank Pabian, a nonproliferation expert at Los Alamos National Laboratory in New Mexico, said in April in Denver at a meeting of the Seismological Society of America.

Researchers have been trying to figure out the relative locations of each of the five tests. By comparing the amplitudes of the P, S and Rayleigh waves, and calculating how long each would have taken to travel through the ground, researchers can plot the likely sites of the five blasts. That allows them to better tie the explosions to the infrastructure on the surface, like the tunnels spotted in satellite imagery.

One big puzzle arose after the 2009 test. Analyzing the times that seismic waves arrived at various measuring stations, one group calculated that the test occurred 2.2 kilometers west of the first blast. Another scientist found it only 1.8 kilometers away. The difference may not sound like a lot, Gibbons says, but it “is huge if you’re trying to place these relative locations within the terrain.” Move a couple of hundred meters to the east or west, and the explosion could have happened beneath a valley as opposed to a ridge — radically changing the depth estimates, along with estimates of the blast’s power.

Gibbons and colleagues think they may be able to reconcile these different location estimates. The answer lies in which station the seismic data come from. Studies that rely on data from stations within about 1,500 kilometers of Punggye-ri — as in eastern China — tend to estimate bigger distances between the locations of the five tests when compared with studies that use data from more distant seismic stations in Europe and elsewhere. Seismic waves must be leaving the test site in a more complicated way than scientists had thought, or else all the measurements would agree.
When Gibbons’ team corrected for the varying distances of the seismic data, the scientists came up with a distance of 1.9 kilometers between the 2006 and 2009 blasts. The team also pinpointed the other explosions as well. The September 2016 test turned out to be almost directly beneath the 2,205-meter summit of Mount Mantap, the group reported in January in Geophysical Journal International. That means the blast was, indeed, deeply buried and hence probably at least as powerful as the Hiroshima bomb for it to register as a magnitude 5.2 earthquake.

Other seismologists have been squeezing information out of the seismic data in a different way — not in how far the signals are from the test blast, but what they traveled through before being detected. Reiter and Seung-Hoon Yoo, also of Weston Geophysical, recently analyzed data from two seismic stations, one 370 kilometers to the north in China and the other 306 kilometers to the south in South Korea.

The scientists scrutinized the moments when the seismic waves arrived at the stations, in the first second of the initial P waves, and found slight differences between the wiggles recorded in China and South Korea, Reiter reported at the Denver conference. Those in the north showed a more energetic pulse rising from the wiggles in the first second; the southern seismic records did not. Reiter and Yoo think this pattern represents an imprint of the topography at Mount Mantap.

“One side of the mountain is much steeper,” Reiter explains. “The station in China was sampling the signal coming through the steep side of the mountain, while the southern station was seeing the more shallowly dipping face.” This difference may also help explain why data from seismic stations spanning the breadth of Japan show a slight difference from north to south. Those differences may reflect the changing topography as the seismic waves exited Mount Mantap during the test.

Learning from simulations
But there is only so much scientists can do to understand explosions they can’t get near. That’s where the test blasts in Nevada come in.

The tests were part of phase one of the Source Physics Experiment, a $40-million project run by the U.S. Department of Energy’s National Nuclear Security Administration. The goal was to set off a series of chemical explosions of different sizes and at different depths in the same borehole and then record the seismic signals on a battery of instruments. The detonations took place at the nuclear test site in southern Nevada, where between 1951 and 1992 the U.S. government set off 828 underground nuclear tests and 100 atmospheric ones, whose mushroom clouds were seen from Las Vegas, 100 kilometers away.

For the Source Physics Experiment, six chemical explosions were set off between 2011 and 2016, ranging up to 5,000 kilograms of TNT equivalent and down to 87 meters deep. The biggest required high-energy–density explosives packed into a cylinder nearly a meter across and 6.7 meters long, says Beth Dzenitis, an engineer at Lawrence Livermore National Laboratory in California who oversaw part of the field campaign. Yet for all that firepower, the detonation barely registered on anything other than the instruments peppering the ground. “I wish I could tell you all these cool fireworks go off, but you don’t even know it’s happening,” she says.

The explosives were set inside granite rock, a material very similar to the granite at Mount Mantap. So the seismic waves racing outward behaved very much as they might at the North Korean nuclear test site, says William Walter, head of geophysical monitoring at Livermore. The underlying physics, describing how seismic energy travels through the ground, is virtually the same for both chemical and nuclear blasts.
The results revealed flaws in the models that researchers have been using for decades to describe how seismic waves travel outward from explosions. These models were developed to describe how the P waves compress rock as they propagate from large nuclear blasts like those set off starting in the 1950s by the United States and the Soviet Union. “That worked very well in the days when the tests were large,” Walter says. But for much smaller blasts, like those North Korea has been detonating, “the models didn’t work that well at all.”
Walter and Livermore colleague Sean Ford have started to develop new models that better capture the physics involved in small explosions. Those models should be able to describe the depth and energy release of North Korea’s tests more accurately, Walter reported at the Denver meeting.

A second phase of the Source Physics Experiment is set to begin next year at the test site, in a much more rubbly type of rock called alluvium. Scientists will use that series of tests to see how seismic waves are affected when they travel through fragmented rock as opposed to more coherent granite. That information could be useful if North Korea begins testing in another location, or if another country detonates an atomic bomb in fragmented rock.

For now, the world’s seismologists continue to watch and wait, to see what the North Korean government might do next. Some experts think the next nuclear test will come at a different location within Mount Mantap, to the south of the most recent tests. If so, that will provide a fresh challenge to the researchers waiting to unravel the story the seismic waves will tell.

“It’s a little creepy what we do,” Reiter admits. “We wait for these explosions to happen, and then we race each other to find the location, see how big it was, that kind of thing. But it has really given us a good look as to how [North Korea’s] nuclear program is progressing.” Useful information as the world’s nations decide what to do about North Korea’s rogue testing.

Neutrino experiment may hint at why matter rules the universe

A new study hints that neutrinos might behave differently than their antimatter counterparts. The result amplifies scientists’ suspicions that the lightweight elementary particles could help explain why the universe has much more matter than antimatter.

In the Big Bang, 13.8 billion years ago, matter and antimatter were created in equal amounts. To tip that balance to the universe’s current, matter-dominated state, matter and antimatter must behave differently, a concept known as CP, or “charge parity,” violation.

In neutrinos, which come in three types — electron, muon and tau — CP violation can be measured by observing how neutrinos oscillate, or change from one type to another. Researchers with the T2K experiment found that muon neutrinos morphed into electron neutrinos more often than expected, while muon antineutrinos became electron antineutrinos less often. That suggests that the neutrinos were violating CP, the researchers concluded August 4 at a colloquium at the High Energy Accelerator Research Organization, KEK, in Tsukuba, Japan.

T2K scientists had previously presented a weaker hint of CP violation. The new result is based on about twice as much data, but the evidence is still not definitive. In physicist parlance, it is a “two sigma” measurement, an indicator of how statistically strong the evidence is. Physicists usually require five sigma to claim a discovery.

Even three sigma is still far away — T2K could reach that milestone by 2026. A future experiment, DUNE, now under construction at the Sanford Underground Research Laboratory in Lead, S.D., may reach five sigma. It is worth being patient, says physicist Chang Kee Jung of Stony Brook University in New York, who is a member of the T2K collaboration. “We are dealing with really profound problems.”

A new tool could one day improve Lyme disease diagnosis

A new testing method can distinguish between early Lyme disease and a similar tick-borne illness, researchers report. The approach may one day lead to a reliable diagnostic test for Lyme, an illness that can be challenging to identify.

Using patient blood serum samples, the test accurately discerned early Lyme disease from the similar southern tick‒associated rash illness, or STARI, up to 98 times out of 100. When the comparison also included samples from healthy people, the method accurately identified early Lyme disease up to 85 times out of 100, beating a commonly used Lyme test’s rate of 44 of 100, researchers report online August 16 in Science Translational Medicine. The test relies on clues found in the rise and fall of the abundance of molecules that play a role in the body’s immune response.
“From a diagnostic perspective, this may be very helpful, eventually,” says Mark Soloski, an immunologist at Johns Hopkins Medicine who was not involved with the study. “That’s a really big deal,” he says, especially in areas such as the mid-Atlantic where Lyme and STARI overlap.

In the United States, Lyme disease is primarily caused by an infection with the bacteria Borrelia burgdorferi, which is spread by the bite of a black-legged tick. An estimated 300,000 cases of Lyme occur nationally each year. Patients usually develop a rash and fever, chills, fatigue and aches. Black-legged ticks live in the northeastern, mid-Atlantic and north-central United States, and the western black-legged tick resides along the Pacific coast.

An accurate diagnosis can be difficult early in the disease, says immunologist Paul Arnaboldi of New York Medical College in Valhalla, who was not involved in the study. Lyme disease is diagnosed based on the rash, symptoms and tick exposure. But other illnesses have similar symptoms, and the rash can be missed. A test for antibodies to the Lyme pathogen can aid diagnosis, but it works only after a patient has developed an immune response to the disease.

STARI, spread by the lone star tick, can begin with a rash and similar, though typically milder, symptoms. The pathogen responsible for STARI is still unknown, though B. burgdorferi has been ruled out. So far STARI has not been tied to arthritis or other chronic symptoms linked to Lyme, though the lone star tick has been connected to a serious allergy to red meat (SN: 8/19/17, p. 16). Parts of both ticks’ ranges overlap, adding to diagnosis difficulties.

John Belisle, a microbiologist at Colorado State University in Fort Collins, and his colleagues had previously shown that a testing method based on small molecules related to metabolism could distinguish between early Lyme disease and healthy serum samples. “Think of it as a fingerprint,” he says. The method takes note of differences in the abundancy of metabolites, such as sugars, lipids and amino acids, involved in inflammation.
In the new work, Belisle and colleagues measured differences in the levels of metabolites in serum samples from Lyme and STARI patients. The researchers then developed a “fingerprint” based on 261 small molecules to differentiate between the two illnesses. To determine the accuracy, they tested another set of samples from patients with Lyme and STARI as well as those from healthy people. “We were able to distinguish all three groups,” says Belisle.

As a diagnostic test, “I think the approach has promise,” says Arnaboldi. But more work will be necessary to see if the method can sort out early Lyme disease, STARI and other tick-borne diseases in patients with unknown illnesses.

Having information about the metabolites abundant in STARI may also help researchers learn more about this disease, says Soloski. “This is going to spur lots of future studies.”

310-million-year-old fossil blobs might not be jellyfish after all

What do you get when you flip a fossilized “jellyfish” upside down? The answer, it turns out, might be an anemone.

Fossil blobs once thought to be ancient jellyfish were actually a type of burrowing sea anemone, scientists propose March 8 in Papers in Palaeontology.

From a certain angle, the fossils’ features include what appears to be a smooth bell shape, perhaps with tentacles hanging beneath — like a jellyfish. And for more than 50 years, that’s what many scientists thought the animals were.
But for paleontologist Roy Plotnick, something about the fossils’ supposed identity seemed fishy. “It’s always kind of bothered me,” says Plotnick, of the University of Illinois Chicago. Previous scientists had interpreted one fossil feature as a curtain that hung around the jellies’ tentacles. But that didn’t make much sense, Plotnick says. “No jellyfish has that,” he says. “How would it swim?”

One day, looking over specimens at the Field Museum in Chicago, something in Plotnick’s mind clicked. What if the bell belonged on the bottom, not the top? He turned to a colleague and said, “I think this is an anemone.”

Rotated 180 degrees, Plotnick realized, the fossils’ shape — which looks kind of like an elongated pineapple with a stumpy crown — resembles some modern anemones. “It was one of those aha moments,” he says. The “jellyfish” bell might be the anemone’s lower body. And the purported tentacles? Perhaps the anemone’s upper section, a tough, textured barrel protruding from the seafloor.

Plotnick and his colleagues examined thousands of the fossilized animals, dubbed Essexella asherae, unearthing more clues. Bands running through the fossils match the shape of some modern anemones’ musculature. And some specimens’ pointy protrusions resemble an anemone’s contracted tentacles.
“It’s totally possible that these are anemones,” says Estefanía Rodríguez, an anemone expert at the American Museum of Natural History in New York City who was not involved with the work. The shape of the fossils, the comparison with modern-day anemones — it all lines up, she says, though it’s not easy to know for sure.

Paleontologist Thomas Clements agrees. Specimens like Essexella “are some of the most notoriously difficult fossils to identify,” he says. “Jellyfish and anemones are like bags of water. There’s hardly any tissue to them,” meaning there’s little left to fossilize.
Still, it’s plausible that the blobs are indeed fossilized anemones, says Clements, of Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany. He was not part of the new study but has spent several field seasons at Mazon Creek, the Illinois site where Essexella lived some 310 million years ago. Back then, the area was near the shoreline, Clements says, with nearby rivers dumping sediment into the environment – just the kind of place ancient burrowing anemones may have once called home.

Bizarre metals may help unlock mysteries of how Earth’s magnetic field forms

Weird materials called Weyl metals might reveal the secrets of how Earth gets its magnetic field.

The substances could generate a dynamo effect, the process by which a swirling, electrically conductive material creates a magnetic field, a team of scientists reports in the Oct. 26 Physical Review Letters.

Dynamos are common in the universe, producing the magnetic fields of the Earth, the sun and other stars and galaxies. But scientists still don’t fully understand the details of how dynamos create magnetic fields. And, unfortunately, making a dynamo in the lab is no easy task, requiring researchers to rapidly spin giant tanks of a liquefied metal, such as sodium (SN: 5/18/13, p. 26).
First discovered in 2015, Weyl metals are topological materials, meaning that their behavior is governed by a branch of mathematics called topology, the study of shapes like doughnuts and knots (SN: 8/22/15, p. 11). Electrons in Weyl metals move around in bizarre ways, behaving as if they are massless.

Within these materials, the researchers discovered, electrons are subject to the same set of equations that describes the behavior of liquids known to form dynamos, such as molten iron in the Earth’s outer core. The team’s calculations suggest that, under the right conditions, it should be possible to make a dynamo from solid Weyl metals.

It might be easier to create such dynamos in the lab, as they don’t require large quantities of swirling liquid metals. Instead, the electrons in a small chunk of Weyl metal could flow like a fluid, taking the place of the liquid metal.
The result is still theoretical. But if the idea works, scientists may be able to use Weyl metals to reproduce the conditions that exist within the Earth, and better understand how its magnetic field forms.

50 years ago, researchers discovered a leak in Earth’s oceans

Oceans may be shrinking — Science News, March 10, 1973

The oceans of the world may be gradually shrinking, leaking slowly away into the Earth’s mantle…. Although the oceans are constantly being slowly augmented by water carried up from Earth’s interior by volcanic activity … some process such as sea-floor spreading seems to be letting the water seep away more rapidly than it is replaced.

Update
Scientists traced the ocean’s leak to subduction zones, areas where tectonic plates collide and the heavier of the two sinks into the mantle. It’s still unclear how much water has cycled between the deep ocean and mantle through the ages. A 2019 analysis suggests that sea levels have dropped by an average of up to 130 meters over the last 230 million years, in part due to Pangea’s breakup creating new subduction zones. Meanwhile, molten rock that bubbles up from the mantle as continents drift apart may “rain” water back into the ocean, scientists reported in 2022. But since Earth’s mantle can hold more water as it cools (SN: 6/13/14), the oceans’ mass might shrink by 20 percent every billion years.

This huge plant eater thrived in the age of dinosaurs — but wasn’t one of them

A new species of hulking ancient herbivore would have overshadowed its relatives.

Fossils found in Poland belong to a new species that roamed during the Late Triassic, a period some 237 million to 201 million years ago, researchers report November 22 in Science. But unlike most of the enormous animals who lived during that time period, this new creature isn’t a dinosaur — it’s a dicynodont.

Dicynodonts are a group of ancient four-legged animals that are related to mammals’ ancestors. They’re a diverse group, but the new species is far larger than any other dicynodont found to date. The elephant-sized creature was more than 4.5 meters long and probably weighed about nine tons, the researchers estimate. Related animals didn’t become that big again until the Eocene, 150 million years later.
“We think it’s one of the most unexpected fossil discoveries from the Triassic of Europe,” says study coauthor Grzegorz Niedzwiedzki, a paleontologist at Uppsala University in Sweden. “Who would have ever thought that there is a fossil record of such a giant, elephant-sized mammal cousin in this part of the world?” He and his team first described some of the bones in 2008; now they’ve made the new species — Lisowicia bojani — official.

The creature had upright forelimbs like today’s rhinoceroses and hippos, instead of the splayed front limbs seen on other Triassic dicynodonts, which were similar to the forelimbs of present-day lizards. That posture would have helped it support its massive bodyweight.

Here’s what was surprising about Kilauea’s 3-month-long eruption

WASHINGTON — After a stunningly explosive summer, Kilauea, the world’s longest continuously erupting volcano, finally seems to have taken a break. But the scientists studying it haven’t. Reams of new data collected during an unprecedented opportunity to monitor an ongoing, accessible eruption are changing what’s known about how some volcanoes behave.

“It was hugely significant,” says Jessica Larsen, a petrologist at the University of Alaska Fairbanks, and “a departure from what Kilauea had been doing for more than 35 years.”
The latest eruption started in May. By the time it had ended three months later, over 825 million cubic meters of earth had collapsed at the summit. That’s the equivalent of 300,000 Olympic-sized swimming pools, Kyle Anderson, a geophysicist with the U.S. Geologic Survey in Menlo Park, Calif., said December 11 in a news conference at the annual meeting of the American Geophysical Union.

As the summit crater deflated, magma gushed through underground tunnels, draining out through fissures along an area called the lower eastern rift zone at a rate of roughly 50 meters per day. That lava eventually covered 35.5 square kilometers of land, Anderson and his colleagues reported in a study published December 11 in Science.

The volcano also taught scientists a thing or two.
Scientists previously believed that groundwater plays a big role in how a caldera collapses. When craters were drained of their magma, “cooling, cracking depressurized the caldera, allowing groundwater to seep in and create a series of explosive eruptions,” Anderson said. “But groundwater did not play a significant role in driving the explosions this summer.”

Instead, the destruction of Kilauea’s crater is what’s called a piston-style caldera collapse, he said. Sixty-two small collapse events rattled the volcano from mid-May to late August, with each collapse causing the crater to sink and pushing the surrounding land out and up. By the end, the center of the volcano sank by as much as 500 meters — more than the height of the Empire State Building.

That activity didn’t just destroy the crater. “We could see surges in the eruption rate 40 kilometers away whenever there was a collapse,” Anderson said.
Life finds a way
Under the sea, life moved in around the brand-new land surprisingly quickly. Using a remotely operated vehicle to explore the seafloor, researchers in September found evidence of hydrothermal activity along newly deposited lava flows about 650 meters deep. More surprising, bright yellow, potentially iron-oxidizing microbes had already moved in.

“There’s no reason why we should have expected there would be hydrothermal activity that would be alive within the first 100 days,” Chris German, a geologist at Woods Hole Oceanographic Institution in Falmouth, Mass., said at the news conference. “This is actually life here!”

The discovery suggests “how volcanism can give rise to the chemical energy that can drive primitive microbial organisms and flower a whole ecosystem,” he said.

Studying these ecosystems can provide insight into how life may form in places like Enceladus, an icy moon of Saturn. Hydrothermal activity is common where Earth’s tectonic plates meet. But alien worlds don’t show evidence of plate tectonics, though they can be volcanically active, German says. Studying how hydrothermal life forms near volcanoes that aren’t along tectonic boundaries on Earth could reveal a lot about other celestial bodies.

“This is a better analog of what we expect to them to be like,” says German, but “it is what’s least studied.”

What comes next
As of December 5, Kilauea had not erupted for three months, suggesting it’s in what’s called a pause – still active but not spewing lava. Observations from previous eruptions suggest that the next phase of Kilauea’s volcanic cycle may be a quieter one. But the volcano likely won’t stay quiet forever, says Christina Neal, the head scientist at the USGS Hawaiian Volcano Observatory and a coauthor of the Science paper. “We’re in this lull and we just don’t know what is going to happen next,” she says.Life finds a way
Under the sea, life moved in around the brand-new land surprisingly quickly. Using a remotely operated vehicle to explore the seafloor, researchers in September found evidence of hydrothermal activity along newly deposited lava flows about 650 meters deep. More surprising, bright yellow, potentially iron-oxidizing microbes had already moved in.

“There’s no reason why we should have expected there would be hydrothermal activity that would be alive within the first 100 days,” Chris German, a geologist at Woods Hole Oceanographic Institution in Falmouth, Mass., said at the news conference. “This is actually life here!”

The discovery suggests “how volcanism can give rise to the chemical energy that can drive primitive microbial organisms and flower a whole ecosystem,” he said.

Studying these ecosystems can provide insight into how life may form in places like Enceladus, an icy moon of Saturn. Hydrothermal activity is common where Earth’s tectonic plates meet. But alien worlds don’t show evidence of plate tectonics, though they can be volcanically active, German says. Studying how hydrothermal life forms near volcanoes that aren’t along tectonic boundaries on Earth could reveal a lot about other celestial bodies.
Scientists are tracking ground swelling near the Puu Oo vent, where much of Kilauea’s lava has flowed from during the volcano’s 35-year eruption history. That inflation is an indication that magma may still be on the move deep below.

The terrain surrounding this remote region is dense with vegetation, making it a difficult area to study. But new methods tested during the 2018 eruption, such as the use of uncrewed aerial vehicles, for example, could aid in tracking the recent deformation.

Scientists are also watching the volcano next door: Mauna Loa. History has shown that Mauna Loa can act up during periods when Kilauea sleeps. For the past several years, volcanologists have kept an eye on Kilauea’s larger sister volcano, which went silent last fall, after a period with few earthquakes and intermittent deformation. “We’re seeing a little bit of inflation at Mauna Loa and some earthquake swarms where it had been active, Neal says. “So that’s another issue of concern for us going into the future.”

DNA tests of Lassa virus mid-outbreak helped Nigeria target its response

When an outbreak of a viral hemorrhagic fever hit Nigeria in 2018, scientists were ready: They were already in the country testing new disease-tracking technology, and within weeks managed to steer health workers toward the most appropriate response.

Lassa fever, which is transmitted from rodents to humans, pops up every year in West Africa. But 2018 was the worst season on record for Nigeria. By mid-March, there were 376 confirmed cases — more than three times as many as by that point in 2017 — and another 1,495 suspected. Health officials weren’t sure if the bad year was being caused by the strains that usually circulate, or by a new strain that might be more transmissible between humans and warrant a stronger response.
New technology for analyzing DNA in the field helped answer that question mid-outbreak, confirming the outbreak was being caused by pretty much the same strains transmitted from rodents to humans in past years. That rapid finding helped Nigeria shape its response, allowing health officials to focus efforts on rodent control and safe food storage, rather than sinking time and money into measures aimed at stopping unlikely human-to-human transmission, researchers report in the Jan. 4 Science.

While the scientists were reporting their results to the Nigeria Centre for Disease Control, they were also discussing the data with other virologists and epidemiologists in online forums. This kind of real-time collaboration can help scientists and public health workers “see the bigger picture about pathogen spread,” says Nicholas Loman, a microbial genomicist at the University of Birmingham in England who was not involved in the research.

Portable DNA sequencers, some as small as a cell phone, have allowed scientists to read the genetic information of viruses emerging in places without extensive lab infrastructure. Looking for genetic differences between patient samples can give clues to how a virus is being transmitted and how quickly it’s changing over time — key information for getting outbreaks under control. If viral DNA from several patients is very similar, that suggests the virus may be transmitted between people; if the DNA is more distinct, people might be picking up the virus independently from other animals.

The technology has also been used amid recent Ebola and Zika outbreaks. But the Lassa virus presents a unique challenge, says study coauthor Stephan Günther, a virologist at the Bernhard-Nocht-Institute for Tropical Medicine in Hamburg, Germany. Unlike Ebola or Zika, Lassa has a lot of genetic variation between strains. So while the same small regions of DNA from various strains of Ebola or Zika can be identified for analysis, it’s hard to accurately target similar regions for comparison among Lassa strains.
Instead, Günther and his team used a tactic called metagenomics: They collected breast milk, plasma and cerebrospinal fluid from patients and sequenced all the DNA within — human, viral and anything else lurking. Then, the team picked out the Lassa virus DNA from that dataset.

All told, the scientists analyzed Lassa virus DNA from 120 patients, far more than initially intended. “We went to the field to do a pilot study,” Günther says. “Then the outbreak came. And we quickly scaled up.” Preexisting relationships in Nigeria helped make that happen: The team had been collaborating for a decade with researchers at the Irrua Specialist Teaching Hospital and working alongside the World Health Organization and the Nigeria Centre for Disease Control.

Analyzing and interpreting the massive amounts of data generated by the metagenomics approach was a challenge, especially with limited internet connection, Günther says. Researchers analyzed 36 samples during the outbreak — less than a third of their total dataset, but still enough to guide the response. The full analysis, completed after the outbreak, confirmed the initial findings.

A metagenomics approach could be useful in disease surveillance more broadly. Currently, “we look for things that we know about and expect to find. Yet evidence from Ebola in West Africa and Zika in the Americas is that emerging pathogens can pop up in unexpected places, and take too long to be recognized,” Loman says. Sequencing all DNA in a sample, he says, could allow scientists to detect problem pathogens before they cause outbreaks.Instead, Günther and his team used a tactic called metagenomics: They collected breast milk, plasma and cerebrospinal fluid from patients and sequenced all the DNA within — human, viral and anything else lurking. Then, the team picked out the Lassa virus DNA from that dataset.

All told, the scientists analyzed Lassa virus DNA from 120 patients, far more than initially intended. “We went to the field to do a pilot study,” Günther says. “Then the outbreak came. And we quickly scaled up.” Preexisting relationships in Nigeria helped make that happen: The team had been collaborating for a decade with researchers at the Irrua Specialist Teaching Hospital and working alongside the World Health Organization and the Nigeria Centre for Disease Control.

Analyzing and interpreting the massive amounts of data generated by the metagenomics approach was a challenge, especially with limited internet connection, Günther says. Researchers analyzed 36 samples during the outbreak — less than a third of their total dataset, but still enough to guide the response. The full analysis, completed after the outbreak, confirmed the initial findings.

A metagenomics approach could be useful in disease surveillance more broadly. Currently, “we look for things that we know about and expect to find. Yet evidence from Ebola in West Africa and Zika in the Americas is that emerging pathogens can pop up in unexpected places, and take too long to be recognized,” Loman says. Sequencing all DNA in a sample, he says, could allow scientists to detect problem pathogens before they cause outbreaks.